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1 Introduction

Throughout the course of their histories, Physics and Mathematics, once two
disparate disciplines, have become ever more intertwined. With the advance-
ment of our understanding of physical phenomena, the need for more sophisti-
cated tools to play a part in their description has become evermore apparent.
Once almost exclusively the prerogative of experimentalists, the last century
has seen a paradigm shift where it is now mostly the theorists who blaze the trail
of discovery. Mathematics, ever incapable of resisting its own utility, has been
the centerpiece of this steady advance. Even some of its most abstract vistas
have found a place in the physical world, which itself, has inspired, motivated
and even progressed these areas which one could be forgiven for questioning,
what their relation to reality is. As it appears, we must either embrace this
inherent complexity, or sacrifice the understanding we would otherwise gain.
However, beneath these intricacies, there seems to be an underlying trend, an
almost irresistible force, towards simplicity and unity. It is only the superfi-
cial complexity of the subject that might have the casual observer believe that
physics had descended into entropy. For at its heart lies its overarching purpose
to describe the world we live in the most simple and elegant way. The answers
to so many of the questions it poses are there for anybody with the patience
to learn its language and skill in applying it, to find.

Hardly anything exemplifies this more than string theory. Originally conceived
in the 1960’s to describe the structure of Hadrons, it was quickly displaced
by the more conservative theory of Quantum Chromodynamics. Not only did
QCD conform to experimental predictions, it also didn’t suffer the myriad of
apparently irremediable deficiencies plaguing this early precursor of modern
string theory. However, far from the final blow one would have expected this
to provide, it continued to be developed for the promise of providing the an-
swer to an even greater problem: unification of quantum theory and gravity.
This unfulfilled fantasy had proved elusive to researchers working in both fields
and now it seamed that string theory would be what brought them together.
But, it has been said that ‘truth resists simplicity’ and verily, it was so. Far
from providing a simple, straight forward theory, it ended up predicting extra
spatial dimensions, negative mass states and the absence of fermions amongst
many other things and it seemed, once again, as though the young theory
would have to be consigned to the scrap heap of interesting, yet futile ideas.
However, with the emergence of supersymmetry, it quickly transpired that the
newly named superstring theory might stand a chance of remedying some of
the old deficiencies. Further, string theory, in a wider context, is an example
of a Kaluaza-Klein (KK) theory, named for the first people who attempted to
unify gravity and quantum theory by proposing the existence of extra dimen-
sions and providing mechanism for coping with them: compactification. With
these tools it seems as though string theorists might be in a position to find a
quantum theory of gravity.

The events of the following years found their high points in the so called first
and second superstring revolutions. These were periods of particularly scin-
tillating insight which lead to several fundamental paradigm shifts. The first
important, slightly unsettling, realization was that there actually existed five,
apparently disperate, strings theories, each living in 10 dimensions. These were
Type IIA, Type IIB, SO(32) heterotic, Eg x Eg heterotic and Type I. The sec-
ond realization then showed these to be, in fact, the five different manifestations
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of an 11 dimensional theory called M-theory (the exact meaning of M is some-
what ambiguous, but most correctly is probably termed ‘Membrane’, though
‘Magic’ and ‘Mystery’ have also been used [1]). Providing a first insight into
what a unified theory may look like, understanding M-theory is one of modern
theoretical physics’ great goals.

These developments conspired to bring to the forefront of our understanding of
physics, something which at that time, had increasingly been encroaching on
the center stage, namely symmetry. One of the most important properties of
any theory, it provides a valuable tool to understanding the physics involved. It
is no understatement to say that, one who understands symmetry, understands
the theory it belongs to. A most poignant example may be the standard model,
who’s gauge symmetries are captured by the group SU(3) x SU(2) x U(1) and
are universally used when trying to understand particle physics. Therefore, one
of the most important aims in the study of modern string and M-theory is to
understand the symmetries involved.

The previously mentioned supersymmetry is the manifestation of this drive.
By extending the well known traditional gauge symmetries, it introduces addi-
tional transformations relating the seemingly unrelated fermions and bosons.
First used to remedy the lack of fermions in the earlier manifestations of string
theory, thereby creating supersrtings, it has since become an indispensable part
of the theory as a whole. Being convoluted with the well known Poincare group,
the generators of the supersymmetries extend its algebra to the so called super
Poincare algebra. Somewhat surprisingly, this alone provides an interface with
gravity simply by promoting the usually global supersymmetries, to local ones.
The result is called supergravity. What is perhaps most interesting, is that the
same theory may also be realized as a low energy limit of the previously dis-
cussed superstring theories. As such, it comes in various flavours, depending on
which string theory we are talking about. The most interesting manifestations
are Type ITA and Type IIB N = 2 along with Type I N/ = 1 supergravity in
10 dimensions where N refers to the number of supersymmetry generators in
powers of two. Being the easiest to understand, they are also stepping stones
on the path to fully describe the supergravity belonging to M-theory in 11
dimensions. However, the transition from 10 dimensions is not at all straight
forward, owing to the symmetries of this higher dimensional theory being but
poorly understood. For this reason attempts at reaching a description have
been limited to 7 dimensions, see for example [2][11].

A further important property of string theory, without which no discussion
could be complete, are its dualities. Being distinct from the traditional notion
of zero dimensional point particles, strings are objects possessing an additional
one dimensional extent. This endows them with certain properties unparalleled
in traditional high energy physics and, in a sense, extends their symmetries be-
yond those familiar to us from the study of particles. The most important of
these are S- and T-duality, the first of which relates the coupling constants of
different theories. Determining whether a theory can be solved perturbatively,
the value of the coupling constant is of great importance. In string theory,
S-duality allows one to map from large to small coupling constants allowing for
a previously unsolvable problem to become solvable. T-duality, which will be
the one of interest to us, arises from the compactification of the extra spacial
dimensions. Its action is to map between winding modes (so called because
they refer to how a string is ‘wound’ around the compact dimensions) and mo-
mentum modes. Interestingly, this is how Type ITA and Type IIB string theory
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are related, that is, they are T-dual to each other. This action is captured by
the group O(d, d).

The complete understanding of all symmetries and dualities brings us to the
topic of generalized geometry. A comparatively recent development, it pro-
vides a mathematical framework with which to attain a coherent description
of supergravity, where the apparently different symmetries consisting of the
diffeomorphism, gauge invariance and T-duality are unified. Generalized ge-
ometry is the term used for the study of the generalized tangent space, most
simply expressed as £ = TM & T* M which is the extension of the tangent
bundle by the cotangent bundle of some manifold M. This provides an elegant
framework, the most fascinating property of which is probably that it already
possess structures inherent to supergravity, namely the structure group O(d, d).
It is this surprising, yet gratifying fact which will serve as starting point for
this report. Another important application of generalized geometry is to the
study of compactification, which seeks to reduce the higher dimensional space-
times on which string theory is formulated, to spacetimes of the form R!:3 x M.
Traditionally, the internal space M is chosen so as to be a parallelizable mani-
fold, that is, a manifold on which one may find a frame field which is nowhere
vanishing. Group manifolds fulfill this requirement and as such are of interest
when studying these internal spaces. A similar concept holds with general-
ized geometry and parallelizability may be extended to the generalized tangent
space. Only, as we will see, the internal space may then be a more general
coset. The last subject we will turn to arises as a consequence of T-duality and
is the somewhat imprecisely named non geometry. This refers to the situation
when T-duality maps to spaces that lack a traditional geometric description
and we will see how this may also be present in generalized geometry and how
it is related to generalized parallelizability.

The layout of this report is as follows. The first section contains a brief sum-
mary of supergravity and and T-duality and gives an outline of the properties
most relevant to the following content. This leads to an introduction of the
basic properties of generalized geometry. We will develop the tools and for-
malisms necessary for the next section. Here will be discussed parallelizability
in the context of the generalized tangent space and how it involves a larger
class of manifolds than traditional geometry. The section will be concluded by
providing two examples and explicitly constructing a Lie algebra like relation
using the Courant bracket. Lastly, we will discuss briefly the concept of non
geometry and by example, show the gauge dependence of the so called non
geometric fluxes.



2 Supergravity and T-duality

2.1 Supergravity

Here is given a short introduction and outline of supergravity and how the need
to better understand its symmetries provides some of the motivation to study
generalized geometry. It arises as the low energy limit of superstring theory in
which strings apparently loose their one dimensional extent and are treated as
point particles. We will be particularly concerned with Type II supergravity,
so called because of its origin in Type II string theory, in d = 10 spacetime
dimensions, the basic structures of which are recalled here. The field contents
of this type of supergravity is [7]

{9, B, ¢, AP pE \F} (2.1)

where we have the metric g, two form gauge field B and the dilaton . The
p-form A®) denotes the RR potentials where p being even or odd determines
whether we are in Type IIA or Type IIB supergravity. There are also the
fermionic fields consisting of the gravitino 1* and dilatino A*. The Ramond-
Ramond (RR) sector will not be of interest to us here, rather we will concentrate
just on the graviton, two-form and dilaton or NeveuSchwarz (NSNS) sector.
Specifically we will be interested in the symmetries of this sector and how they
serve as part of the motivation for studying generalized geometry. The action
for these fields may be written as

S = / dz'®\/ge=%¢ (R(m) + 4(0¢(2))? — 112H(a:)2> (2.2)

where R is the Ricci scalar and H = dB, analogous to the electromagnetic
two form. We note that this action is invariant under two different kind of
transformations. The first are diffeomorphisms acting by translations such
that = — x* 4 ev*. This gives us the variations

0g=Lyg 0¢p=L,p 6B=L,B (2.3)

We express the group of differomorphism on M as Dif f(M). The second is
the gauge transformation of the B-field which gives the three form H up to
addition of a closed two form. Hence, we have the gauge transformation

5B — B +d\ (2.4)

We also note, given that H is closed, B is only locally defined such that, given
an open cover {U;} over M, on the overlap U; N U;, we require the one forms
A to provide the patching of B. So we also have

By = By + dAgj) (2.5)

thus requiring, on U; NUj, that dA¢;y = dA(;). These form an Abelian group of
closed two forms denoted by % (M). The total symmetry group of the NSNS
sector is then given by a semi direct product of the gauge and diffeomorphism
groups i.e. Gysns = Dif f(M) x Q2(M). We can thus formulate the general
variations

6g=Lyg 0¢=1Lyp OB=L,B—d\ (2.6)
which are parametrized by the one form A\ € T*M and vector v € TM. A
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central feature of generalized geometry is that it unifies diffeomorphism and
gauge symmetries and combines the NSNS fields into a single object. However,
this report will not cover in detail how this is done and it will merely commented
on in a later section. The reason for considering the matter here is that it
provides an important part of the motivation for generalized geometry as a
whole.

2.2 T-duality

In this chapter is given a brief outline of an important symmetry of string
theory T-duality. This duality is a phenomenon arising from the one dimen-
sional extent of strings and has no parallel in classical quantum theories of
point particles. It is purely a string theory phenomenon. In its simplest form,
it arises from considering Bosonic string theory, which lives in 26 dimensions,
compactified on to a circle of radius R so as to give a backgrounds that looks
like R?° x S§. We then have the situation where a string may either propa-
gate over the surface of the compact S! or wind around it. It turns out that
these two cases are related by T-duality which maps between the two via the
transformation R <> %. However, Bosonic string theory is not of much interest
to us here and the reader is referred to [3] for explicit calculations. Rather we
will concentrate on the generalization where the same principle is applied to
string backgrounds of the form My_,, x T™. For this, we consider the Polyakov
action in local coordinates

S[X] = / drdov/—hh®g,,0, X" 0 X" (2.7)
x

This is an example of what is known as a sigma model with the action describing
a worldsheet, the two dimensional surface traced out by propagating strings,
embedded in the spacetime M and described by the metric g,,,,. The worldsheet
is denoted by ¥ and has coordinates 7 and ¢ with metric h%*. X gives the
embedding of the world sheet such that X : ¥ — M. In the rest of this
section, we will assume the worldsheet metric h®, to be flat for simplicity. We
now give a brief outline of the Buscher rules. First derived by T. Buscher in
[4], they give the transformation of background fields under T-duality. The
derivation given here follows [5] and [6]. To begin with, we consider the sigma
model using the complex coordinates z = 7 + i0, Z = 7 4+ t0 and introducing
the two form potential B encountered in the previous section

S[X] = /E d?2(Buu(X) + 9, (X))0X 09X (2.8)

Now suppose there is a local coordinate chart which we split to get {z#} =
{0, 2}, where a € {1...d — 1} such that B and g are independent of 6. Assume
that the variation §X,, = X, 4 €k, acts by translation in the 6 direction giving
a killing vector k, = % which is an isometry of the metric i.e. Lrg = 0. We
further impose the condition that the isometry be periodic so that we have the
isometry group U(1). Hence, it is easy to see that the variation of the metric,
along with the derivative terms, vanishes. For the B-field, consider ¥ = 9C
then, by Stokes’ theorem

X*B = / X*H (2.9)
aC c

We then demand that the variation 6H = L H = LdB = dL;B = 0 vanish
and thus locally get the condition £;B = dw. The gauge transformation (2.4)
then gives dLgB — LiB + LxdA = d(w + L A). With our choice of killing
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vector we then have L3 A, = 0pA,. In order for the variation of B to vanish,
we choose a gauge where 99A,, = —w,. Hence have that £;B = 0. Note we
can also choose {z#} = {64, 2%} where A € {1...N} and b € {N +1...d} for the
isometry group U(1)", provided g and B are independent of #“. Considering
this, the action (2.8) may be written in terms of of this split basis as

S[X] = / d*2 (Qapd0°00" + Qup0X 00" + Q4,00*0X" + Qup0X0X")
(2.10)
where we have chosen Q,, = g, + By,. The T-dual case to this is obtained
by gauging the symmetry, that is, we formulate an action where the isometry
appears as a gauge symmetry. So now, a gauge variation gives X, (2,%Z) =
X, (2,%) + €k, (2,Z). We also introduce the U(1)" gauge fields A® and A4 and
minimally couple them to 87 by

967 — DOB = 968 + A

967 — DB = 998 + A” (2:11)
Introducing the Lagrange multiplyer 6, the action now reads
S[X] = / d?2(Q DO DOP + Q,pdX DOP + Q 4, DO DX 2.12)
+QupdX DX + §(0A — A))
From where we get the first order action
Si[X] = /dzZ(QABAAZB + QupdX A" + QA IX" (2.13)

+Qup0X DXt + (94 — DA))

To be consistent, this should reduce to (2.10) (and by extension (2.8)) and we
check this by computing the equations of motion for § which give

DA —HA=0 (2.14)

Solving this by A = df and A = df, where f is identified with 6, we indeed
get (2.10). The isometry is chosen to act along a particular direction denoted
by X® ie. 6 = X*® and Qap = Qee- Now, the next step is to calculate the
equations of motion for the gauge field. Doing so, we obtain:

_éé = gooA + (gob + Bob)éXb
(2.15)
aé - g..A + (ga. + Bao)aXb

Identifying = X°, rearranging for A, and substituting this into (2.13) we can
rearrange the result to obtain the dual action

S[X] = /V 2By (X) + G (X)) OX DX (2.16)

The new metric an B-field are given in terms of those in (2.8) by the relations
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N 1
Jee -
Jee
- Bob
Jeb =
Jeo
~ eaYeb — BoaBo
Gab = Gap — J2afeb =~ ZeaZeb (2.17)
Jee
Bob = Jeb
Jee
~ oaBob - Boag.b
Bap = Bay — L2eeb — Zealel

Jee

These equations are known as the Buscher rules and give explicitly the T-
duality transformation of a background consisting of a metric and B-field in the
presence of a U(1) isometry. For example, consider a circle of radius r described
by the round metric ds? = dr?+rd$?. This has the prerequisite isometry in the
¢ direction. Under T-duality we get the dual metric ds? = dr? + %dgbz. This
is simply the classical T-duality from Bosonic string theory discussed earlier
which inverts the radius of the circle. The final point, before moving on to
the next section, is the group action of T-duality. Put simply, one may go
from (2.8) to (2.16) by the action of the group O(d,d), which, for the tensor
Quv = G + By, is denoted by

Q@ =@Q+nQ ) (L)) cowa )

This will prove to be of fundamental importance and serves as further moti-
vation to study generalized geometry. We will see how this group appears as
the structure group of the generalized tangent bundle and how this links to
T-duality.



3 Generalized Geometry

We now turn to the subject of generalized geometry itself. Many of the con-
cepts and structures were originally introduced by N. Hitchin [8] and further
developed by M. Gualtieri [9] [10]. In laying out the basic principles, we follow
[7] and [9]. Here are defined and described generalized vectors and their struc-
ture group O(d, d). We then move on to defining some of the tools necessary to
continue to the next topic. It should be noted that generalized geometry, when
formulated to yield a description of supergravity, also requires, appart from
the structure group of the generalized tangent bundle, an additional factor to
account for the dilaton degrees of freedom extending the structure group to
O(d,d) x R. However, the topic of this report does not require the inclusion of
this factor and it does not have any bearing on the calculations performed. For
this reason, we will be neglecting the dilaton and considering only the group
0(d,d)

3.1 Generalized Tangent space

Consider a manifold M of dimension d. Replacing the traditional approach of
working with the tangent bundle T M and cotangent bundle T* M separately,
generalized geometry introduces a new object: the generalized tangent bundle
E=TMaeT*"M. Ifv e TM and XA € T*M, then the generalized vector
W € I'E has components given by

W= <A> (3.1)

This space is naturally endowed with an inner product and a metric

n(W, W) = (W, W) = i,A (3.2)

It will be useful to introduce a notation for the components of generalized
vectors. Using coordinate bases {52} on TU,) and {dz*} on T*U,) over
some patch U,), we may write W = v“a% + Apdxt where p = 1,...,d. We
also introduce a new index running over all components of W, ie. M =1, .., 2d,
which will generally be denoted by capital Latin characters so that

o for M =
WM =gt o (3.3)
Ay for M =p+d

With this in mind, we define a basis {F4} on E, where A = 0,...,2d which
satisfies

(Ea,Ep) =nas (3.4)

and is thus an orthonormal basis over E. The flat metric 7, may be recast as

a matrix to give
1/0 1

Which may be diagonalized so as to give a matrix with split signature (d, —d)
implying its invariance under the action of the orthogonal group O(TM &
T*M) ~ O(d,d)

Proposition. For O € O(d,d), n is invariant under O(d,d) transformations
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such that n(OW,0W) = n(W, W)

Proof. Express a general element O € O(d,d) in terms of the d x d matricies

a,b,cand d as O = (Z Z) Then write

al Y [0 I a b)) (v

n(OW,0W) = (v A
( ) pT dT I 0 c d A
Ta+aTc Tb+a"d v
=(v )
dTa+b"c dTb+0bTd A
Now require cLa+a”c =d"b+b"d =0and ¢'b+a’d = d"a+b"c = 1. Thus
n(OW,0W) = n(W, W) O

Because of the natural O(d,d) action on E, we can define the generalized
structure bundle

K={(x,FEs):x € Mand {E4} is an O(d,d) basis of E,} (3.6)

which is a principle bundle with fiber O(d, d). There exists a canonical orienta-
tion on TM @ T*M [9], so that we require O(d, d) to preserve this orientation.
Hence we must further be able to reduce the structure group to SO(d, d). Not-
ing that the highest exterior power of E may be decomposed as

ANITM @ T M = NTM @ NT* M (3.7)

so that, for w € AYT* M and v € AYT M there exists a natural pairing between
AT* M and AT M which may be expressed as

(w,v) = det(w;(vy)) (3.8)

Thus, we may make the identification A2?TM@®T* M = R so that the canonical
orientation on the generalized tangent bundle is defined by a real number. We
will now look in more detail at the symmetries of this space. The structure
group O(d, d) is generated by elements of the form

(o (Aol)T>’ (5 1) <= 7) (39)

where A € GL(d,R) and is the structure group of TM and B € A?T* M and
B € A2T M. The additional objects are known as B-tranforms and B-tranforms
and act as endomorphisms of E by B : TM — T*"M and g : T*"M — TM.
Exponentiating, one may define the mapping induced by B as

et A= v+ (\—i,B) (3.10)
which acts so as to shear in the T* M direction. And similarly, that of 8 as

vt (i) + A (3.11)

which shears in the T M direction. To see the role of these transformations, it
will be useful to consider what happens in the overlap between two coordinate
patches U, and U,. On U, NU,, the vectors and one forms must be patched in
the usual way, that is
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T
—1 .
Via) = V(@) + Aa) = Aty o) + (A<ab)> A) — Pz W (ar) = Vip)  (3.12)

where A(,;) are the patching one forms. Recasting this this in matrix form
gives

A 0
v I 0 (ab) v
Va = (a)> _< > _ T ( (b)) Mab b
(a) (A(a) dAgpy 1 0 (A(at)) Ay) (ab) V(D)

(3.13)
We now see the correspondence between the patching one forms and the B-
transformation. It is no accident that we have chosen B to denote these
transformations. As will become apparent, it does indeed correspond to the
two form NSNS potential. Here it is treated as a generator of the subgroup
Gp C SO(d,d). Hence it becomes apparent that that the overall structure
group Ggeom must be given by the semi direct product Ggeom = Gp X GL(d)
and embeds as a subgroup of SO(d,d) . Before moving on, it is important to
note that from (3.12) we see that all vectors v(,) are globally equivalent up to
some transformation by the structure group of the tangent bundle, whereas the
one forms A(g) are not. This follows from the additional term involving A (),
which describe the fibration of 7% M over T M. 1t is this patching that is cap-
tured by the B-transform. Hence we note that while a particular choice v, is
globally equivalent up to some GL(d,R) rotation, the one forms require addi-
tional patching in order for the generalized vector V,) to be a global section
of E. Taking this into account, V € I'F is a global section if we define

V= (/\ ”Z,UB) (3.14)

We also note, that one can make a change of basis by

VM o OM VN Vi — Vy(0H)Y,, (3.15)

where O € O(d,d). We may also define a basis on E which will generally be
denoted E4 where A € [0, ...,2d]. Any choice of basis is defined up to O(d,d)
transformations, that is, the two bases related by F4 = OF AE B are equivalent.
This is a point we will return to in a later section where it will prove to be of
central importance.

3.2 Dorfman derivative and Courant bracket

Now the structure of TM & T* M has been explored, we turn our attention to
another important property. That is, there exists a natural generalization of
the Lie bracket.

Definition. The Courant bracket is the skew symmetric bilinear form [-,-] :
ExXE—Est forW=w+Ael'E andV =v+ a € I'E we have

[W,V] = [10,0] + Lot — Lo — %d(iwa Y (3.16)

where [-,-] is the ordinary Lie bracket. Though defined as an analogue of
the Lie bracket on the generalized tangent space and having some properties
in common, it does not satisfy the Jacobi identity, something that will be
discussed in more detail later on.
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Now we wish to investigate the symmetries of the Courant bracket. At the
most basic level, one would expect to find the same symmetries as for the Lie
bracket, that is we expect it to be diffeomorphism invariant. For the normal Lie
bracket, under the projection 7 : TM — M, we have the bundle automorphism
(F, f) such that F': TM — TM and f: M — M preserve the bracket

F[X,Y] = [FX, FY] (3.17)

VX, Y € TM and F = f,, where f. : TM, — TMgy is the push-forward.
Now we need to define an analogous action on T'M & T™ M, that is to say, a
generalized bundle automorphism (F, f). Thus, F' needs to satisfy

F[W,V] = [FW, FV] (3.18)

VW,V € T'E. Hence, we see that F = f, @ f* where f* : TM — TM is the
pull-back. However, this isn’t the full story; the Courant bracket possesses an
additional symmetry inherited from the structure group of the generalized tan-
gent bundle. Recall that we also had the action of G, the B-transformation.

Proposition. For W = w+ A € TE and V = v+ a € T'E we have the
identity [ePW,eBV] = eB[W, V] + iyi,dB

Proof. [eBW,eBV] = [w + A+ iwB,v + a + i,B] = [W,V] + [w,i,B] +
liwB,v] = [W, V] + LuivB — LyiwB — divisB = [W,V] + LaivB — iwdi,B =
[W, V] + iy B + inindB = eB[W, V] + iyindB 0

Hence we see that if B satisfies dB = 0, the Courant bracket is invariant under
B-transformations. It can thus be shown that the total automorphism group of
the Courant bracket [10] consists of the the Diffeomophism group on M and the
B-transformations Gp. Thus, similarly to the structure group on E, we have
the total automorphism group of the Courant bracket, Go = G x Dif f(M).
Before Continuing, it will be useful to note the existence of a further object
related to the Courant bracket: the Dorfman bracket.

Definition. The Dorfman bracket is the bilinear form [-,-]p : EX E — E
st. forW=w+AXeTE,V=v+a€cl'FE and X =z +w € 'E we have the
expression

W, V]p = Lyv + Ly — digh (3.19)
which also satisfies the identity

(X, W, VIplp = [[X;Wlp,Vlp + [W,[X,V]p|p (3.20)

This bracket is indented as a generalization of the Lie derivative which however,
does not satisfy the Jacobi identity but rather a modified version called the
Leibniz identity as shown. To exemplify the correspondence between the Lie
derivative and Dorfman bracket, we may express the latter in the form

W,V]p = LV (3.21)

which is referred to as the Dorfman derivative. We do not have the same rela-
tion between the Courant bracket and the Dorfman derivative as between the
Lie bracket and Lie derivative. However the two are related

Proposition. W =w+ X € T'E and V = v+ a € I'E we have the iden-
tity [W, V] = 3(LwV — Ly W)
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Proof. [W,V] = Lyv+ Lo — LA — Ld(ipa —i,\) = %va —LiL,w+ digo+
iwdo—diygA+iyd\— L diyot digh = §£wv+%(diwa+iwda)—gdivA—%ﬁvw—
%(div)\ + i,d\) + %diwa = %(va + Ly — dig)) — %(va + LA — diya) =
s(LwV =Ly W) O
The Dorfman derivative may be made to look more familiar by defining the
the partial derivative operator on F

H for M =
g — QO for s (3.22)
0 forM=p+d

Now we may express the Dorfamn derivative entirely in terms of generalized
vectors

Ly VM = VNoNy WM + (0MVY — oNvMy Wy (3.23)

The indices are raised and lowered using the metric in (3.2). It is now straight
forward to define this action on a generalized tensor of arbitrary rank. So for
P € TE®™ we have

]LWle"‘A/I” — VN(?NPMl“'M" + (aMlvN _anMl) PMQ...Mr,L+

o (OMRYN _ GN Y M) pMa M (3.24)

3.3 Generalized Metric

An important point needs to made regarding £ = TM @ T*M which is in
fact, an isomorphism rather than a definition. There is no canonical splitting
of E and an appropriate isomorphism must be chosen if one wishes to describe
the generalized tangent bundle in terms of vectors and one forms. This is an
ambiguity that can exploited. One instance of this, which will be of interest
to us here, is the existence of a principal sub-bundle of K which captures both
the conventional metric ¢ and B-field. In the context of supergravity, this
brings closer the unification of the gauge and diffeomorphism invariance of the
NSNS sector by defining an object that geometrizes both fields (though strictly
speaking, the dilaton should also be included). However, we are interested in
this structure for the splitting it defines which will be use later. Explicitly, we
define an O(d) x O(d) principle bundle .J, such that J C K. This gives us a
sub-bundle Cy C E corresponding to one of the O(d) factors where the inner
product (-,-) is positive definite and with dim(Cy) = dim(M). The second
group then gives C_ C E as the orthogonal complement C_ = CJJ; with (-, )
negative definite, defining the splitting

E=C,aeC_ (3.25)

Noting that E* ~ (TM @& T*M)* ~ (T*M & TM) ~ E, we now define the

operation G : E = C, & C_ — E* ~ E where G is the generalized metric
which has the form

G = <'a'>|C+ +<'7'>|C, (326)

To determine an explicit expression for G we can define a projection from F

onto Cy @ C_ by

1
VEM — §((SMN + pMHVY (3.27)
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where P PS = §M and PM, PN nan = nsr. The operator P has a general
solution of the form [12]

pr, P g 'B g—Bg'B

Py= (e )= (0 5 (3.29
pr P, g —Byg

Where the generalized metric may then be obtained by lowering an index and

is given by

_ s _(9—Bg'B —-Bg!
Gun = nusP N = ( 9713 971

(3.29)
where Gy ny = Gy since B is antisymmetric. It will be useful to note that
after the splitting E = C @ C_ it is possible to define an O(d) x O(d) invariant
frame over the two sub-bundles {E;} U {E-}. We do so defining {E;} and
{EZ } to be orthonormal bases on Cy and C_ respectively, with @« = 1...d and
a = 1...d. Hence they satisfy

<E¢—1i_a Elj_> = TNab <EE_7EE_> = —Tab <EE_7 E(j> =0 (330)

where 7 is the flat metric. Further taking the orthonormal frames {é}} and
{é;} of the metric g this metric may then be expressed as

Nay = 9(e5, &) ngp = g(eg, ) (3.31)
Thus, for this choice of projection, the generalized basis, taking patching of the
one forms into account, may be expressed as

Ef=éf +ef —ig4B Ef =é; —e; —i,-B (3.32)

a a ez

3.4 Generalized Connection and Torsion

Now we have a metric, it makes sense to examine some other structures known
from Riemannian geometry, namely the connection and torsion, both of which
have generalized counterparts. Of interest will be connections compatible with
the O(d, d) structure of the generalized tangent space.

Definition. For a vector bundle W the generalized connection D 1is a lin-
ear operator D : C®(W) — C™(E* @ W) which, for a generalized vector
X = XAE 4, may be expressed as

DX = (dX* + Q43 XP) ® Bx (3.33)

To understand the connection coefficients, it is helpful to to render this as

Dy X4 =0 XA +Q,/ 5 XP (3.34)

where Q,/AP = —Q, 4. We note that Q € TE* ® adj(K), where M is the
general tangent space index and with the A and B indecis giving its value in the
adjoint bundle representation of K. Now it remains to define the generalized
torsion of D which may be done analogously to the classical torsion. Recall
that conventionally the torsion T € TTM ®A%2T* M of a p-form w € TAPT* M,
with respect to a metric g, is given by (i,T)w = (L’y — Ev) w where V is the
Levi-Civita connection. Using the Dorfman derivative as the generalized coun-
terpart to the Lie derivative, we find an analogous expression for the generalized
torsion.
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Definition. For VW € T'E the generalized torsion is defined as the linear
map T : TE — T'A’E and may be expressed as
TW)VE = (LR, — Ly )V? (3.35)
Here we have LY which is simply the Dorfman derivative in terms of the gen-
eralized connection rather than da; such that
L v =vNDywM + (DMVYN — DNVM) Wy (3.36)

It may be noted [12] that 7' € TA3E. The generalized torsion tensor T4B¢ is
thus antisymmetric on all three indices. Its components may be expressed in
terms of the connection coefficients

where the indices have been raised using 4%

3.5 Lie Algebroids and Jacobi

Lastly we turn to a further property of the Courant bracket to further exem-
plify its relation to the Lie bracket. However, first we must introduce a new
concept, the purpose of which will become clear later on.

Definition. A Lie algebroid is the triple (X, [, ], p) where X is a vector bundle
over M, [-,+] is the Lie bracket on TTM and the bundle map p : X — TM
which is called the anchor. For x,y € TX and f € C*°(M) we then have

p(lz,y]) = [p(2), p(y)]
[m,fy] = f[$>y] +p(3?)f 'Y

The simplest example of this is the tangent bundle. It is a Lie algebroid with
the anchor given by the identity element and as such is the triple (T'M, [+, ], id).
However, in general the Courant bracket does not define a Lie algebroid as it
fails to satisfy the Jacobi identity. That is, we cannot take (TMQT*M, [, ], )
for the projection 7 : TM @ T*M — T M. This is be captured by the Jacobi-
ator.

Definition. The Jacobiator measures the Courant bracket’s failure to satisfy
the Jacobi identity. For V.W,Z € E it is defined as

Jac(V,W, Z) = [IV. W], 2] + [[W, Z], V] + [12, V], W] (3.38)

A useful identity can be obtained from identifying this with the Nijenhuis op-
erator [10]

Definition. The Jacobiator may be defined in terms of the Nijenhuis oper-
ator Nij(-,-,+), as

Jac(V,W, Z) = d(Nij(V, W, Z)) (3.39)

which may in term, be expressed in terms of the Courant bracket

Nij(V,\W,Z) = 3 ([V,W], 2) + (W, 2], V) + ([Z, V], W)) (3.40)

Wl =



4 Parallelizability

Now we have introduced the concept of a generalized tangent space, explored
some of its properties and constructed analogous operations to the ones familiar
from classical geometry, we move on to considering the implication of having
such a space. The analogy we will be particularly interested in is paralleliz-
ability. This is the concept of having global frame over the entire manifold,
meaning the transition functions between coordinate patches become trivial.
Well known in differential geometry, their study and classification is is central
to the subject of flux compatification which seeks to reduce the higher dimen-
sional string spacetimes onto spaces of the form R'® x G where G is some
group manifold. Group manifolds are of interest because of the existence of
a preferred frame which satisfies the property of being globally defined. The
question we ask, is whether generalized geometry in any way allows for a gener-
alized counterpart of this property. Consider the fact that such a frame will be
nowhere vanishing and that we wish to find some generalized frame to satisfy
the same property. Thinking of a generalized basis vector

Ea= () (4.1)

where é, and e, are some d dimensional basis and its dual, one could imgine
having a manifold where the vector components of E vanished while the one
form components remained non zero. If this conspired to happen so that F
would never vanish, one would have a globally defined generalized basis, thus
implying that a manifold that is not conventionally parallelizable, may be gen-
eralized parallelizable, laying nigh the suspicion that the latter represent a more
general class of manifolds. It is this consideration that will be of interest to us
in this section

4.1 Parallelizable Manifolds and Lie Groups

Before embarking on the following discussion is will be useful to recall some
basic properties of group manifolds. So we start out with the basic definition

Definition. Let G be a lie group and X a vector field on G. For g,h € G we
have the left action Ly : G — G s.t. Lyh = gh which induces a diffeomorphism
on M given by Ly, € Dif f(M). Hence we define a left invariant vector field
which satisfies

Xlgh = LgsX|n (4.2)

Here we see the link between Lie groups and geometry. Since we can use the
left action to map the identity to every element of the group G, we may also
use the action defined above to map V|, € T..M to V|, € T,M for any p € M.
This means, we can find a nowhere vanishing vector field on a manifold pro-
vided it has vector fields which are invariant under a certain group leading
to the concept of parallelizability. It should be noted that may also make an
equivalent definition using right multiplication Rsh = hg for g,h € G.

Definition. A manifold M is parallelizable iff the tangent bundle TM is
trivial

So, if the structure group is trivial, this means that if, on a d dimensional

16
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manifold, we can define an everywhere linearly independent vector field {X,,}
where n = 1,...,d, it is said to be parallelizable. The vector field then forms a
global frame, which we denote {é,}, and its dual {e®}. These then give us the
familiar relationship

[Eas 5] = fap e (4.3)

along with the Maurer-Cartan equation of the dual frame

e’ = fy. %’ Nef (4.4)

where f,, ¢ are the usual Lie algebra structure constants. Thus we see that par-
allelizable manifolds are group manifolds. Such manifolds will admit a metric
of the form

g =nue' ®e” (4.5)

where 7),,,, is constant.

4.2 Generalized Parallelizable Manifolds

In the context of the previous section, we may well ask the question of whether
there is any analogous structure for generalized spaces, that is, do there exist
generalized parallelizable manifolds? The answer is yes and may be realized
by defining an analogous expression to (4.3). We let E4 € T'F(E) be a global
section of the frame bundle on E which allows us to write down a similar
expression using the Courant bracket

[Ea, Ep] = FABCEC (4.6)

where we assume F, ;¢ to be constant and take the role of structure constant.
This frame will have an O(d, d) metric as dfined earlier

n=nPE,® Fp (4.7)

such that we have (E4, E4) = nap. It is worth recalling here, that the basis
E,, and by extension the structure constant, is only defined up to O(d,d)
transformations and that apparently different algebras may be equivalent if
the corresponding frames are equivalent. It will be useful to note that for
a given frame, one may always define a generalized connection D such that
DE 4 = 0 for all values of A. This connection will generally not be torsion free,
but may be expressed in terms of the generalized torsion free connection D.
Hence, for some generalized vector V', we have

DyVA =DyVA+5,/5VE (4.8)

with the new connection coefficients 2,5 € I'E* ® adj(K) similar to those in
(3.34) and is constructed so as to be compatible with our frame. We use this
to understand an important property of the structure constant itself. Consider
an expression similar to (4.6) involving the Dorfman derivative

Lg,Ep = F.;CEc (4.9)
As demonstrated earlier, the Courant bracket is the anti symmetrization of the

Dorfman derivative giving

FABC = (FABC - FBAC) (4-10)

N
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Hence F, 5 is antisymmetric in its lower indices. This, however is not all and
we make a further proposition.

Proposition. The structure constant Fapc s totally antisymmetric

Proof. Given a basis {E4} we define a connection D which is compatible
s.t. DE4 = 0. Now, with the definition of the generalized torsion tensor in
(3.35), we have

T.CpEc =L2 Ep—Lg,Ep
= —Lg,Ep

Recall TABC = QIABC] Thus, lowering indices appropriately, we get

Tapc = —Fapc
showing the structure constants F' and by extension F' to be totally antisym-
metric. O

We now take the frame F4 € I'F(E) to satisfy (4.6).

Proposition. For E4 € TF(E) and constant F,5¢, we have Jac(E4, Ep, Ec) =
0 and hence the algebra (4.6) is a Lie algebra b

Proof. Recall that the Jacobiator may be given in terms of the Nijenhuis
operator (3.39). For the latter we get

Nij(Ea,Ep,Ec) =% (([Ea, Egl, Ec)+ ([Ep, Ecl, Ea) + ([Ec, Eal, Ep))
= 3 (Fu”(Ep, Ec) + FpcP(Ep, Ea) + Fo 4P (Ep, Ec))
1
3

(FusPnpc + FgcPnpa + Fo4Pnpe)

(4.11)
As Jac(Ea,Ep,Ec) = dNij(Es, Eg, Ec) and the above expression is con-
stant, the Jacobiator vanishes and (4.6) defines the Lie algebra §. O

Proposition. The Lie algebra by is a subgroup of o(d,d) s.t. b C o(d,d)

Proof. From [10] we get that the we may defined a derivative of the inner
product in terms of the Courant bracket as

m(V)(W, Z) =([V.W]+ &V, W), Z) + (W, [V, Z] + d{V, Z)) (4.12)
For W,V,Z € TE. Substituting the basis vectors E4 we get

7(E)(Ep, Ec) = ([Ea, Ep] + d(Ea, En), Ec) + (Ep, [Ea, Ec] + d{Ea, Ec))
= FABD<ED5EC> + FACD<EB7ED>

= Fa5"pc + Fac”nsp
(4.13)
Notice also that the left hand side is equal to 0 given that inner product
(Ep, Ec) is constant. Hence we get

Fapnpe + Fac”nsp =0 (4.14)
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Hence the algebra b defined by E4 closes. Given that F,zC transforms in
the adjoint representation of the generalized structure bundle K, owing to its
definition in terms of the torsion, we have h C o(d, d) O

We may also relate the Courant to the Lie Bracket

Definition. We define the projection m : E — T M, such that the Courant
bracket of V,W € E reduces to the Lie Bracket

m([V: W) = [x(V), =(W)] (4.15)

Though, in general this does not define a Lie algebroid unless the above propo-
sitions are satisfied. Now if we consider the projection of the generalized basis
vectors, we get a set of 2d vectors on TM i.e. m(E4) = x4 though there may
be some degeneracy. To form a basis, x4 must have at least d non vanishing
components. As 7(-) conserves the structure of the Lie algebra, we also have
the algebra h now defined over T M by the vector field 4. Exponentiatiating
gives us the group H on M. However, we may expect that some vectors van-
ish under projection, defining a closed subalgebra of h. We take P to be the
corresponding group and fix a point p € M. The algebra is given by elements
of E4 with vanishing projection at a point, that is

p={Es€bh:7m(Ea)|p, =0} (4.16)

We further note that as the Lie bracket of two vanishing vector fields also
vanishes, confirming that p must indeed be a sub-algebra of . Thus we see
that

M=H/P (4.17)

Where dim(H/P) = dim(M) = d, dim(H) = d+ k and dim(P) = k where k
is some positive integer. Compare this to the earlier example of paralellizable
manifolds which corresponded to groups. Now we see that for a manifold to
be generalized parralellizable, the condition is relaxed so as to include cosets.
Thus it appears, as though generalized paralellizability is more general than
paralellizability. In the rest of this section, we show two examples of generalized
paralellizable manifolds

4.3 Three Sphere

In this section, we consider the example of generalized bases on the three sphere.
The easiest way of doing so, is to first consider the conventional basis of S by
recalling that it is the group manifold of SU(2). Hence, utilizing (4.2), we may
define a left invariant basis and thus see that the manifold is parallelizable.
Consider

ot +ix? 2 it
where the radius has been chosen to be one and hence (z1)? + (22)? + (%)% +
(x1)? = 1 with {2}, 22,23, 2%} € R. We may define a left invariant basis {é,(lL)}
where é(X) € TTM, by é1) = L,.X|. where e denotes the identity element.
By performing the push-forward, one may construct this basis explicitly as
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e = 220, + 210, + 240,5 — 230,
) ) 0 cos(¢) 0
= cot(0) cos(qﬁ)a—(ZS + 8111((25)% - sinEH)) %
el = 230, — 240, + 210,45 + 220, (4.19)
_ b 0  sin(¢) 0 :
= —cot(0) sm(gi))a—¢ + COS(@% sini@)) o
é:(sL) = —2%0,1 + 230, — 2%0,5 + 21 0pa
_9
=99

where 6, ¢ and ¢ denote the Euler angles, which in terms of the rectangular
coordinates are given as
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This frame satisfies the Lie algebra relation (4.3) with f, 3 = f3; 2= fo3 ' = 1.
We may similarly compute the Maurer-Cartan one forms which are obtained
by considering the pull-back e = Ly X|. and are given by

') =sin(¢)df — cos(¢) sin(6)dep
2L = cos(¢)df + sin(¢) sin()dp (4.21)
3 = d¢ + cos(0)dy

which similarly, satisfy (4.4). These allow us to define a top form on S* which
we identify with the H-flux as H = ke! A e? A e® = ksin(0)dé A df A dip. The
B-field, defined as H = dB, then given by B = kcos(0)d¢ A dip up to gauge
transformations. Now that we have an SU(2) basis over S, we may construct
the generalized basis vectors. Following the expression (3.14) we may define

B =@V, &P eP, '™ i 0y B+ ™) +i 1) B, e +i 1) B) (4.22)
1 2 3

This is then split so as to separate the vector and one form parts so that we
get the split frame

L ML) A(L) A(L
BO = @), 4 o)
B ) ) (4.23)
ETL) = (¢! —i 1) B, e*F) — iy B, &3 — i)
¢ :
with a,a € {1...3}. We compute the algebra of this frame as being

L L
[E", EP] = £, B
IIEt(ZL)v Eb(L)]] = _faE bEE (424)
[[EE(L),EE(L)]] =0

Where f,3 = % It is interesting to note that the form of this algebra is
reminiscent of one well known in physics. Recall that the Poincare algebra

has generators corresponding to boosts J and translation P for which we have
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commutations relationships of the form [P, P] ~ 0, [P,J] ~ P and [J,J] ~ J
similar to those above.

Next, define a similar basis using right multiplication. The procedure for doing
so is exactly analogous to that for left invariant vector fields. We denote the

right invariant basis by {éflR)} such that

égR) = =220, + 2'0p2 — 105 + 230,4
B 00 costw) 0
= cotl®)cos(W) 5 i) 55+ 5u(6) 99

&R = 239,11 20,2 + 10,0 — 220, (4.25)
B ) o 0 sin(y) 0 4.25
= ~cotO)sin(@) 55 + cosl¥) 55 n o) 99

ééR) = *2L‘46x1 - 3338362 + anxs + 20y
_ 9
= o9

And also the Maurer-Cartan forms

M) = _sin(v))dh + cos(v)) sin(#)do
> = cos(1)df + sin (1) sin(0)de (4.26)

3B = dip + cos(0)do

The form of H doesn’t change. We now define the generalized basis similar to
before
R A(R) A(R) (R
B = (e ol
paR)  — (el(R) _ iA(R)B7e2(R) . Z-(R)B,e?,(R) _ i(R))
éy 3

2 é

(4.27)

Which now give the algebra

[E:" By = —fu, °Ee
IIEng)7 Eb(R)H — faE bEE (428)
[EZ®) | EPR)] = 0

As may be expected from the classical example of left and right invariant vector
fields on S3. Generalized geometry allows us to realized both algebras simul-
taneously on S® which, aside from being the group manifolds of SU(2), is also
the coset 288; . We then have the isomorphism SO(4) ~ SU(2) x SU(2) which
we may realized as both the left invariant and right invariant vector fields. In
splitting the generalized baisis we will choose the O(d) x O(d) invariant, or-
thogonal subspace C @ C_ so that we split the frame into E and EZ as in
(3.30). Hence we get

E(: = ét(lL) + eal) — ié(L)B

_ 4.29
Ef =l 4B i B (4.29)

It is worth noting that H has the same form in both frames. We now obtain
the algebra

B, By ] = foy °BY
£, Bf] =0 (4.30)
HE;7EE+]] = " Jab ‘B

c
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And we thus see that the two bases, while not commuting with themselves,
commute with each other giving us an SU(2) x SU(2) structure on S3. This
provides a good example of how the isomorphism taking the generalized tangent
bundle into some sub-bundle is not canonical and that by considering different
splitting we may realized different structures.

4.4 Three Torus

In this next section, we explore another example of a generalized paralellizable
manifold: the three torus. As in the previous section we will first examine the
straight forward case of a simple T2 with non zero H-flux and see how this leads
to an algebra of the form (4.6). The next step will be to perform a T-duality
transformation by application of the Buscher rules (2.17) and see whether the
resulting manifold yields a similar structure.

Now, recall that a torus may be represented as a product manifold such that
it can be represented as T2 = S! x S x S!. This gives us a simple coordinate
basis {01, 02,03} on the tangent space where we use the convention 9, = 8%'
The dual basis is then {dz!,d2z? dx3}. Tt is easy to see that we have the Lie
algebra relation [0,, 0] = 0. One may already construct a generalized vector
as

Ep = (01,0y,05,dz", da?, da®) (4.31)
Substituting this into the Courant bracket we get the algebra

[Eay Eb] =0
[Ea, E®] =0 (4.32)
[E*, E'] =0

However, this is not very interesting and recall that in order to define a global
section of F, we must take into account the B-transformations as in (3.14).
To this end we consider the following: we identify H with the volume form on
the 3-torus such that H = J=Vol(T?) = £dz' A da? A da® for some k € R.
We then choose B = J=a'dx? A da®, though we are free to make any another
choice. We let ! € [0,27] so the normalization has been chosen accordingly.
This now allows us to define a global basis on E with patching given by the
B-field.

k? 1 k? 1
Ea = (9,05 + Qidﬁ,ag - Qidx{dxl, d?, da®) (4.33)
s s

This gives us the split generalized basis with

B, = (01,0 + k2" da®, 05 — k2" da?)

(4.34)
E® = (dx',dz?, da®)
The Counrant bracket then gives the algebra
[[Eaa Eb]] = *HabcEc
[E., E'] =0 (4.35)

[E*,E'] =0

Where Hio3 = % in addition to all other permutations. We see that, with
the introduction of the B-field, the constant F4pc has taken the form of the

H flux. We now take this torus with non zero B-field and the transformation
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given by the Buscher rules in (2.17). In order to do so, we write down the
metric of the torus and the B-field explicitly as

100
Blg = kl‘l, uv = 0 1 0 (436)
0 0 1

Applying the Buscher rules in the 22 direction then gives

1 0 0
By =0, guw=[0 1+ (’%)2 kel (4.37)
0 ke 1

This is a so called twisted torus owing to the dependence on the S! coordinate
21, which causes the two torus to twist as one moves around the circle. Another
way to think of it is a fibration of 7 over the base, S*. From this metric, we
may construct again the generalized basis vectors which is most readily done
considering the generalized metric in (3.29). In the absence of the B-field this

reduces to the simple form
0
(g gl> (4.38)

giving the basis as

kat kat
Ea= (0,00 — %ag, 8y, da?, da?, da® — %dﬁ) (4.39)
which may be split
Eqy = (01,0, — 5205,
0= (01,00 — 503 3)1 (4.40)
Ee = (da',d2?, dz® — K- da?)
From this, we may now compute its algebra as
[[Eaa Ebﬂ = fab CEﬂc
[Ea, EY] = —f,. YE° (4.41)

[E*, E'] =0

So the first T-duality transformation has changed the flux H to f. The reason
for choosing this relabeling will become clear in the next chapter. At first
glance, this result bears no apparent correspondence with the previous results.
However, recall that equivalent frames are related by O(d,d) transformations.
So we may also act by an element of O € O(3,3) on (4.33). Explicitly, if we
take

100000

010000

000001
O€lo 00100 (4.42)

000010

001000

(4.33) becomes

Ea = (01,0 — ka'da®, da® da', da?, 03 + kax'da?) (4.43)

Which also gives us the same algebra as in (4.41). Relabeling the above such
that da® <+ 95 gives us back the exact form of (4.39) and see that this is what
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the action of the T-duality essentially boils down to. Hence we must conclude
that the algebras (4.41) and (4.35) are equivalent. This is valid, not only on a
local level but also on a global as the transformation O is globally defined.

We have seen the first demonstration of the fact that the fluxes depend on
the choice of frame, something that will be further explored in the following
section. Before moving on, we notice two things in particular. Firstly, the
choice to name the structure constant in (4.35) to the same as the H-flux is no
accident. The two do indeed correspond and the structure constant F' encodes
information of the flux. Indeed, we may regard the constant f as a flux, though
perhaps it is best imagined as measuring the twisting of the torus fibers (in
(4.37) one torus coordinate is shifted as a function of the coordinate on the
base leading to a twisting of the torus).

Secondly, we see that the flux f is related to H by a T-duality transforma-
tion, which is also encoded by the O(d, d) transformations of the generalized
space. In fact, the fluxes are equivalent and, on the level of physics, indistin-
guishable as they can be deformed into each other globally. Hence this fact is
also captured by F' which leads to question of whether we may see in it, the
emergence of more structure. This question leads us on to the next chapter.



5 Non Geometry

Here we investigate the emergence of non geometry from T-duality and how
this may be linked to generalized geometry. Conventionally, one would consider
a manifold which possesses an atlas containing several coordinate charts with
which one may describe the manifold. In the overlap between two such charts
there is a transition function in order to switch from one to another and so
obtain a global covering of the manifold. In our case, non geometry refers to
the absence of the possibility to obtain such a description. How so becomes
clear in the following pages. One may well ask how such backgrounds come to
be. The answer lies in string theory. As discussed in a previous section, the ac-
tion of T-duality relates theories in different backgrounds by mapping between
high and low momentum modes into each other. This is not an inherently
geometric transformation but rather a physical one, which also has geometric
consequences. We will see the effect of repeated T-duality transformations and
how this produces backgrounds which elude a classical geometric description.

These backgrounds are characterized by the appearance of certain non geo-
metric fluxes, usually denoted @ and R, which are T-dual to the, what we will
now term, geometric fluxes H and f already encountered. Within this section
we will see how these fluxes emerge from the algebra of the generalized frame
by following the work done on this topic in [13].

In this context, we explore another example of generalized paralellizable man-
ifolds. This time however, we will go further and consider bases that do not
conform to the standard expression (3.14). In doing so, we will see the emer-
gence of additional structure constants, which are in fact the additional fluxes.
These, as it will turn out, are what constitute the constant F' in (4.6). We
consider the simplest general case which differentiates itself from the previous
examples in that it also contains a S-transformation as defined in (3.11).

5.1 p-transformation

Let {E4} be an orthonormal basis on E which is then split to give

E, for A=
Ey = eora=a (5.1)
E®for A=a+d

where a € [1,...,d]. We further let these span C; @& C_ as defined in (3.25).
We have chosen a slightly different convention to before so as to not clutter the
notation. The frame is now restricted by choosing e™ = e¢~. What this does is
essentially to fix the action both O(d) groups to be equal and not to let them
vary independently. This is in contrast to the S® case where both groups were
able to act on both the left and right bases independently. Thus, the O(d, d)
and the O(d) x O(d) metrics now take the form

0 1 10
_ gT _ T
v (0 e amrr() ) -
Using the fact that we have fixed the O(d) actions, E may be expressed as
e 0
E= <ATB éT> (5.3)

We will also consider the S-transformation as defined in (3.11). Having been
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absent from the discussion so far, one may well ask what is its effect. In
answering this we not that it is possible to define a metric analogous to (3.29)
by defining the S-transformed frame {E4}. We then have

(01 = A4 =p (10 -
e (0 e copr (! ) »

Where we may express E by

B=(5 &) (55)

In this frame, we may rewrite the generalized metric (3.29) in terms of 3 as

> g 9B

G =gy 5% 530) (56)
where we have relations by § = (g + B)g~'(g — B) and 8 = —(g+ B) " 'g(g —
B)~!. The B-transformations are problematic in that they do not generally
provide consistent patching conditions as demanded by (3.12) and hence usu-
ally do not result in globally defined frames. We will exploit this to provide
an example of how non geometric fluxes emerge and demonstrate a link with
T-duality. It is possible for a [S-transformed frame to give a consistent de-
scription of the entire manifold, but only when there exists a globally defined
transformation between the frame (5.5) and (5.3). This will be explored later
on.

We now consider first the frame under the B-transform so that we have
E¢=e* E,=¢,—1i:,B (5.7)

Proposition. Given the above transformation, we have the identities

(1) [[Eav Eb]] = fab ‘B, — Hgp E°

(2) [[EU«VEbﬂ = “Jac bEC (58)

3) [E“ET=0

where f,, © are the structure constants as identified in (4.3), Hape = tejadBpe) +
f[adec]d and B = Bgpe® A e’

Proof. Using the expression for the Courant bracket as given in (3.16), the
above may be shown as follows

(1) [Ea,By] = [éa,és] + Leic, B — Leyic, B — 2d (ie,ic, B — iz, ic, B)

= fop €c+dig, ie, B+ is,dic, B —igt6, B —is,die, B
+3d (ie,ie, B — i, ic, B)

= fab Ce. + EéaiébB — iébdiéaB

= Ja Cé. + £éa (Bbded) — iébd(Baded)

= fub e, + iéadeded + Bbddiéa e + Bbdiéaded — ’iéb dBaded
+dBadiéb€d

= fup “c + (iejadBue + f[adec]d)ec

= Jab CEC + HabcEc

(2) [[Ea, Eb]] = £éa eb — %diéa €b
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= iéadeb
= — e, (flqe® N e?)
= _fbacec
— _fb c
(3) [E*, E*] = 0 trivially O

We may also consider the S-transformation. While a part of the O(d, d) struc-
ture group of the generalized tangent space, it is not however, an automorphism
of the Courant bracket. To see the effect of the S-transform, we consider its
action on the generalized basis vector such that (5.7) now becomes

E®=¢"+iwfB E,=¢é, (5.9)

Proposition. Given the above transformation, we have the identities

(1) [[E(I?Eb]] = fab ‘Ee.
(2) [Ba, B’ = ~foe E°+ Q" ,E. (5.10)
(3) [[Ea’ Eb]] — Qab CEC + RabcEC

where Qab .= 5adiéddﬁbc—ﬁbdiéddﬂac‘i‘ﬂadﬂbefde < Rabe — iéudﬁab‘i‘ﬁadfdc b+
B*f.. ¢ and f,, © is defined as above.

Proof. Using the courant bracket similar to the previous proof, the following
may be shown

(1) [Eava]] :[éaaéb]
= Jab Céc

— c
— Jab EC

(2) [Eav Eb]] = £éa eb + ‘Céaiebﬁ
7fac bec + Eéaﬁbd(ébcéd - 5bdé0)
= —f,. b€ +ig, dB%é. + BY[ea, éd) — B*[éa, Ec)
~fue bec + iéadﬁbcéc + ﬁacfad Céc _ 61)6 e déd
= _fac E* + ch aEC

(3) [[Eav Ebﬂ = [iéaﬁviébﬂ] + ‘Ciaaﬂeb - ‘Ciabﬂea - %d (iiéaﬁeb - iiabﬁea>
= Li,, ple.p + ii,, pde® — iz, pde® — 3dis, pe® — 3dis, ge”
= Eﬁadéd (,@be)ée + ﬂbeﬁlgadédée + ﬂadiéddeb - Bbeiéedea + iécdﬂab
— (ﬂadiéddﬁbc _ ﬁbdiéddﬁac + 6adﬁbefde c) éc¢
+ (iécdﬁab + Badfdc b + Bbcfec a) eC
— Qab CEc + RabcEC
O

Hence we see the emergence of the fluxes H, f, @ and R from the action of
O(d, d). Observe that the fluxes are dependent on the choice of frame E 4 which
are related to equivalent frames by an O(d) x O(d) rotation. Hence equivalent
frames give different fluxes appearing as decomposition of the structure con-
stant F' and lead to the question if we can also, as in the case of f, get rid of
@ and R just by changing the basis. The answer to this is yes, but in some
cases only locally. As mentioned, it is always possible to make an O(d) x O(d)
rotation of the form F — E’ = T'E such that the -transformation is mapped
to a B-transformation [13]. So the frame (5.5) may be transformed into (5.3).
More explicitly, if we have O_ acting on C_ and O, acting on Cy, then the
transformation T' € O(d) x O(d) is of the form



28 5. NON GEOMETRY

_(0,+0_ 0,-0_
T= (0+ "o o, +0_> (5.11)

To see the action of this explicitly, we split the base on C'y so as to separate
the base and the fibers with the corresponding frames {ep} and {er} with the
duals {ép} and {ér} recalling that T-duality, to which we wish to relate this,
acts on the fibers. Thus the frame (5.5) becomes

en
e erb (5.12)
€B
éh

Which may be put [13] into the standard form (5.3) now expressed as

en
L (5.13)
B
—é% ek

if the transformation in (5.11) is given by

1
( (eF +erB)(ef — 6F6)1>
However, in order for (5.12) to give a consistent basis, we require this transfor-
mation to be globally defined. That is, O+ must be single valued. Otherwise,
while one may locally deform @ into H, it is not possible globally.

In the next section, we will see an example of this and how the same structure
is obtained by T-duality. It should be stressed that while we can see non ge-
ometric structure emerging form [S-transformations, it is more of an accident
and should not necessarily be seen as an inherent consequence of generalized
geometry itself. The transformations are merely a method of producing differ-
ent frames that can be related by the O(d, d) or O(d) x O(d) symmetry groups.
Non geometry is properly a consequence of T-duality and occurs here almost
incidentally. The reason for introducing the concept, is that in the following
example of the three torus, there is a link between the frame given by the S-
transformation and the one remaining T-duality.

It is also worth noting that, while some spaces give rise to non geometric fluxes
and that the spaces themselves elude a geometric description by not allowing
consistent patching, this is only in a conventional geometric sense. It is in fact
possible to perform patching, only it must be by T-duality transformations.
So while they may be badly defined in traditional geometry, in string theory
they do not present a problem. This is interesting as it seems to suggest that
strings require an extension of traditional geometry, where we see manifolds as
collections of points, since this doesn’t seem to capture the structure necessary
to describe backgrounds found in string theory. Rather, we need to include
structures like T-duality which, after all, arise from a fundamental object that
is not point like, but rather has one dimensional extent. It should also be noted
that for this reason, the non geometric manifolds arising here cannot be de-
scribed by supergravity, which treats strings as point like objects. Nonetheless
we can utilize it to illustrate the fact that these backgrounds exist and that are
non geometric.
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5.2 Non Geometry: Torus

We now exemplify the previously laid out arguments by returning to the three
torus. Having already examined the case of a torus with H-flux and the corre-
sponding T-dual twisted torus, one may continue this analysis and look at the
link between T-duality and non gemeorty.

Firstly, we consider a S-transformation of (4.31). In analogy to the B- trans-
formation, we choose 3 = 210, A 95, giving

4T
1,9 kat N
{81,82,83,dx ,dlL’ +§83,d1' - %82} (515)

In this basis we have the algebra

[Eo,Ep] =0

[[Eavaﬂ = _chaEc (516)

[[Ea’ Eb]] — QabcEc
Where Q%3 = % As expected we see the emergence of the non geometric

charge Q. To see how this corresponds to the result obtained by T-duality
consider the following. We have one remaining isometry in the 2 direction
and hence one further possibility of a T-duality transformation. Taking the
metric (4.37) and applying the Buscher rules once again gives

1 0 0
2! 1
ng = 1-’1—’(3&‘7)27 Guv = 0 11 (kz1)? (1) (517)
0 0 TFhaT)?

Which, after some manipulation, allows us to write down the generalized basis

kat k!
{31, (92, 83,dx1, dIz + %63, dﬂ?s - %62} (518)

This corresponds exactly with (5.15) and gives the same algebra. So we see
that the second T-duality gives us the same basis as the S-transformation thus
giving rise to the @Q-flux. We are now left with the outstanding question of
whether the two algebras (4.35) and (5.16) are related. Having linked T-duality
to the O(d,d) transformations inherent in generalized vectors, it has already
been shown that the fluxes f and H are equivalent. We have already seen that
there is a general O(d) x O(d) rotation which will take us from (5.18) to (4.33).
Substituting appropriately, (5.12) yields

1 0 0
Or=1 O_=]0 A2(1- (k)2 oa-2ke (5.19)
0 2A2k2 A72(1 — (B2

where A = /1 + % However, the coordinate x! is that of the base, S', and
thus periodic. So we see that the transformation given above holds only locally
as O_ is not single valued. Hence the flux Q may locally be ”gauged” away
but not globally. In examining the base (5.18), we also see that it does not
conform to the definition of generalized vectors in (3.14) as it is not patched
appropriately to be a global section of E.

While it is possible to switch from the 8 to a B-transformation, the absence of
single valued rotation represents a global obstruction to this. We are thus lead
to conclude that there is no consistent patching condition in the space arising
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from the second T-duality and that, while locally it may have the structure of
a manifold, globally it does not.

This leaves us with the question of what happened to the R flux. We have
seen that the definition of the B-field has left us two isometries along which
we can use the Buscher rules to go to a T-dual configuration. However, there
remains one more direction in which one may perform a further transformation,
though the absence of an isometry may lead one to believe that there is not
T-duality. While it is certainly not possible to use the Buscher rules, it has
been argued [14] [15] that it should in principle be possible to perform a further
T-duality leading to the, here absent, R-flux. Although it should be noted the
the quantity itself is not well understood. While background associated with @
had at least a local description, that of R is thought to elude even this, being
non associative. This, however is all the attention we shall give it here.



6 Conclusion

The past few pages have laid out and demonstrated the subject of general-
ized geometry. We observed its formulation, motivated by the symmetries of
supergravity and T-duality and showed how it may be applied to better un-
derstand these. However, our discussion was limited to Type II supergravity
in order construct generalized geometry in its simplest manifestation. Had we
been concerned with a general case, we might have asked how these princi-
ples were to be applied to M-theory. Indeed, such studies have been made
[2] [11]. Rather than having an O(d,d) structure, one considers the excep-
tional symmetry group F(q)q and the study of the aptly named exceptional
generalized geometry. Rather than the generalized tangent bundle splitting
into E ~TM & T*M, one instead considers a space with a local isomorphism
E~TM®NT* Mo NT M@ (T*M @ A"T*M). However, this theory is
plagued by an significant shortcoming; it is incapable of describing 11 dimen-
sional supergravity. Owing to the absence of understanding for exceptional
groups with rank greater than FEg, M-theory is as elusive here as anywhere
else. In fact, we do not even have such a theory based on Eg and can only use
this description for d < 7.

Had the comparison of the generalized objects been continued, we would also
have encountered generalized curvature and the counterparts of the Riemann
and Ricci tensors [7]. These would eventually result in a reformulation of the
supergravity action (2.2) where the local diffeomorphism and gauge invariance
had been replaced by an O(d,d) invariant action unifying the entire NSNS
sector into a single geometric object, the generalized Ricci scalar

S:/|volg\R (6.1)

better concluding the motivation provided in the introductory section on su-
pergravity.

In further exploring the analogy between traditional and generalized struc-
tures, we found generalized parallelizable manifolds to constitute a larger class
than the conventional group manifolds. By the possession a preferred frame,
they proved themselves have structure beyond the O(d,d) structure group.
The Courant bracket provided a method for computing the structure of these
spaces. A consequence, is that they are of interest as compactification man-
ifolds, providing a more general space on which to explore the consequences
of dimensionally reduced theories. The examples chosen to illustrate this were
special for already being group manifolds, though nonetheless served well to
demonstrate the principles involved, including how to realize additional struc-
ture in the case of S3. Here, we found the first example of frame dependence
and how a change of basis could result in equivalent algebras.

An outstanding question in the study of generalized parralellizable manifolds,
is that of classification. Unlike the internal spaces consisting of group man-
ifolds, the cosets arising from this new method lack a consistent description.
This is an outstanding topic of research and still in need of development.

Lastly, we saw a link between generalized geometry and T-duality. By con-
sidering the S-transformation, we saw that we could obtain the same frame as
the T-duality transformation, leading into a curious subject area: non geome-
try. Characterized by the Q and R fluxes and eluding a traditional geometrical
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description, we saw its emergence from the symmetries inherent to string the-
ory. As a subject, it is not well understood but has been studied in the context
of B-transformations [16][17]. Generalized geometry, as a theory describing su-
pergravity, will never be able to fully capture non geometry. It does however,
provide a first and interesting insight into this comparatively new area of re-
search. Ultimately the goal in studying it to understand string theory in a
background independent way. But this is still a long way from being realized.
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